Bacterial initiators form dynamic filaments on single-stranded DNA monomer by monomer

نویسندگان

  • Hsin-Mei Cheng
  • Philip Gröger
  • Andreas Hartmann
  • Michael Schlierf
چکیده

DNA replication initiation is mediated across all domains of life by initiator proteins oligomerizing at replication origins. Recently, it was shown that initiators can directly bind single-stranded DNA (ssDNA) and thus might enhance origin melting. In this study, we used single-molecule fluorescence assays to probe the ssDNA binding mechanism of the replication initiator DnaA. Our experiments revealed that DnaA forms a dynamic filament on ssDNA in 3' to 5' directionality in the presence of ATP and analogs. After nucleation with a three-monomer seed, monomers dynamically assemble and disassemble one monomer at a time at the 5' end, each monomer binding three nucleotides of ssDNA. The addition of adjacent double-stranded DnaA binding sites stabilized the DnaA filament on ssDNA. Our results extend the current models of origin melting via DnaA ssDNA interaction.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Active nucleoprotein filaments of single-stranded binding protein and recA protein on single-stranded DNA have a regular repeating structure

When E. coli single-stranded DNA binding protein (SSB) coats single-stranded DNA (ssDNA) in the presence of 1 mM MgCl2 it inhibits the subsequent binding of recA protein, whereas SSB binding to ssDNA in 12 mM MgCl2 promotes the binding of recA protein. These two conditions correspond respectively to those which produce 'smooth' and 'beaded' forms of ssDNA-SSB filaments. By gel filtration and im...

متن کامل

Quantitative analysis of the kinetics of end-dependent disassembly of RecA filaments from ssDNA.

On linear single-stranded DNA, RecA filaments assemble and disassemble in the 5' to 3' direction. Monomers (or other units) associate at one end and dissociate from the other. ATP hydrolysis occurs throughout the filament. Dissociation can result when ATP is hydrolyzed by the monomer at the disassembly end. We have developed a comprehensive model for the end-dependent filament disassembly proce...

متن کامل

Human Rad51 filaments on double- and single-stranded DNA: correlating regular and irregular forms with recombination function

Recombinase proteins assembled into helical filaments on DNA are believed to be the catalytic core of homologous recombination. The assembly, disassembly and dynamic rearrangements of this structure must drive the DNA strand exchange reactions of homologous recombination. The sensitivity of eukaryotic recombinase activity to reaction conditions in vitro suggests that the status of bound nucleot...

متن کامل

Amyloidogenesis of bacterial prionoid RepA-WH1 recapitulates dimer to monomer transitions of RepA in DNA replication initiation.

Most available structures of amyloids correspond to peptide fragments that self-assemble in extended cross β sheets. However, structures in which a whole protein domain acts as building block of an amyloid fiber are scarce, in spite of their relevance to understand amyloidogenesis. Here, we use electron microscopy (EM) and atomic force microscopy (AFM) to analyze the structure of amyloid filame...

متن کامل

Molecular mechanism of sequence-dependent stability of RecA filament

RecA is a DNA-dependent ATPase and mediates homologous recombination by first forming a filament on a single-stranded (ss) DNA. RecA binds preferentially to TGG repeat sequence, which resembles the recombination hot spot Chi (5'-GCTGGTGG-3') and is the most frequent pattern (GTG) of the codon usage in Escherichia coli. Because of the highly dynamic nature of RecA filament formation, which consi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 43  شماره 

صفحات  -

تاریخ انتشار 2015